
ITRW324 Project 4: Webtionary
November 9th, 2006

This document describes the Webtionary system and its installation procedures.

Table of contents:

Section 1: Introduction

1.1. Site overview 1

Section 2: Server configuration
 2.1. Apache 2
 2.2. PHP 2
 2.3. PostgreSQL 2

Section 3: Database design

3.1. Database overview 3
3.2. Table synopsis 3
3.3. Table specifications 4
3.4. Database properties 6

Section 4: System configuration
 4.1. Installation 7
 4.2. Database structure 7

4.3. Initialization and recovery 8
4.4. Usage 8
4.5. Troubleshooting 8

 - 1 -

Section 1: Introduction

1. Site overview:

Webtionary is a dynamic website designed to serve as a repository for South African
languages. Its name is a slight pun, due to its likeness to a web dictionary. The system
can be classified along its main features:

User management:

 User registration and administration
 User notification via e-mail in the events of registration and vocabulary

modification
 Continuous, per-page login status notification

Vocabulary:

 Browse, review, download and upload user-contributed words and wordlists
 Download FOSS (Free and Open Source Software) wordlists from server tree
 Browse, review and download user-contributed translations
 Downloadable in plain text, XLS (Excel spreadsheet), XML and PDF formats

Games:

 Anagram maker
 Crossword builder
 Hangman
 Random word generator

Accessibility:

 Extensible multilingual support with default Afrikaans and English interfaces
 WAP support: login, vocabulary and translation interfaces delivered via WML
 Browser compatibility: Microsoft Internet Explorer, Firefox and Opera

Technology:

 Dynamic content retrievals via Ajax
 SSI page view counter
 Realm-based MD5 authentication via .htaccess file
 Localization implemented with JavaScript and content negotiation

All the abovementioned features are accessible via a web browser or mobile device,
where appropriate.

The system makes use of PHP and the PostgreSQL DBMS.

Webtionary was created by Theo Fitchat as a third year web design project at the
North-West University in Vanderbijlpark, South Africa. He is currently studying
towards his BSc in Information Technology, to be concluded in 2006.

 - 2 -

Section 2: Server configuration

This section briefly highlights the components required to run Webtionary.

2.1. Apache:

The Webtionary interface is designed to run on a web browser (mobile or otherwise),
which ultimately sends and receives data in the HTTP protocol. A web server is
required to communicate with the browser at the opposite end. The Apache web
server is known to be compatible with Webtionary, and its usage is highly
recommended.

Apache v2.0.55 through v2.2.3 was used during the development of Webtionary.
Apache home page: http://httpd.apache.org.

2.2. PHP:

Webtionary is programmed in PHP, and runs with its Apache module, as opposed to
its standalone CGI interpreter.

It is required that PHP load its PostgreSQL extension library at startup, for interfacing
with the database. This can be configured in the PHP.INI file. This alteration is
usually easy to accomplish; for more details however, refer to the PHP
documentation.

In addition, Webtionary requires the following settings to be configured:

 Web server needs to know where to locate PHP
 PHP needs the address of a valid SMTP server

It is beyond the scope of this document to expand on these procedures; once again, the
PHP documentation will serve as a good starting point.

PHP v5.1.5 through v5.2.0 was used during the development of Webtionary.
PHP home page: http://www.php.net.

2.3. PostgreSQL:

The PostgreSQL DBMS is used for data storage and retrieval. A standard software
installation will suffice for Webtionary’s purposes.

The Webtionary database structure is discussed in the following section. First-time
database initialization (after structure creation) is discussed in Section 4.

PostgreSQL v8.0.3 through v8.1.5 was used during the development of Webtionary.
PostgreSQL home page: http://www.postgresql.com.

 - 3 -

Section 3: Database design

3.1. Database overview:

Webtionary uses the PostgreSQL DBMS for data storage and retrieval.

A schema called ITRW324_PROJECT4 was created to collectively group the
system’s tables. The schema contains eight tables; a discussion of each table follows
in sub-section 3.2.

3.2. Table synopsis:

Tables are listed in a pseudo-chronological fashion.

USER and ADMIN_USER:
Each row in these tables identifies either a regular or administrative Webtionary user,
respectively.

LANG:
Each row in this table describes one language used within Webtionary.

WORD:
Each row in this table describes one word in a specific language, and also refers to the
word’s contributor.

AFFIX_TYPE:
Each row in this table describes the properties of one affix type, including the code
used to represent it, its relative position (prefix/suffix) and the replaceable component.

AFFIX_SUBST:
Each row in this table describes a possible substitution for one affix type.

TRANS:
Each row in this table describes the translation of a word, from one language to
another. No reference to the contributing user is stored.

CROSSWORD:
Each row in this table describes one crossword puzzle submitted by a user.

The aforementioned table design was chosen for simplicity and practicality. No
redundant information or excessive null values exist in the database, except where
user-induced, and the design also allows for rapid addition of new languages.

 - 4 -

3.3. Table specifications:

ADMIN_USER:

Col. No.: Name: Type: Constraint:
1 id Integer (serial) Primary key
2 username Text Not null
3 password Text Not null

USER:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 username Text Not null
3 password Text Not null
4 name Text None specified
5 surname Text None specified
6 email Text None specified

LANG:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 lang Text Not null

WORD:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 lang Integer Foreign key to LANG.id, not null
3 user Integer Foreign key to USER.id, null allowed
4 word Text Not null

AFFIX_TYPE:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 lang Integer Foreign key to LANG.id, not null
3 code Text Not null
4 type Integer Not null
5 affix Text Not null

AFFIX_SUBST:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 affix Integer Foreign key to AFFIX_TYPE.id, not null
3 subst Text Not null

 - 5 -

TRANS:

Col. No.: Name: Type: Constraint:
1 id Integer (serial) Primary key
2 from_word Integer Foreign key to WORD.id, not null
3 to_word Integer Foreign key to WORD.id, not null

CROSSWORD:

Col. No.: Name: Type: Constraint:

1 id Integer (serial) Primary key
2 lang Integer Foreign key to LANG.id, not null
3 user Integer Foreign key to USER.id, null allowed
4 rows Integer Not null
5 cols Integer Not null
6 data Text Not null
7 hint Text None specified

 - 6 -

3.4. Database properties:

The following database rule adjustments are required by Webtionary:

Referential integrity:
The following shall be different from the default settings:

 All foreign keys are set to CASCADE on an ON DELETE event
 All foreign keys are set to CASCADE on an ON UPDATE event

Exceptions to abovementioned rules:

 Column CROSSWORD.user is set to SET NULL on an ON DELETE event,
since the removal of a user shouldn’t induce the removal of their contributed
crossword puzzles

 Column WORD.user is set to SET NULL on an ON DELETE event, since the

removal of a user shouldn’t induce the removal of their contributed words

Indexes (secondary keys):
The following additional column indexes shall be created:

 ADMIN_USER: unique index on username column
 AFFIX_SUBST: unique index on (affix, subst) column combination
 CROSSWORD: unique index on (lang, rows, cols, data) column combination
 LANG: unique index on lang column
 TRANS: unique index on (from_word, to_word) column combination
 USER: unique index on username column
 WORD:

o indexes on lang, user, and word columns
o unique index on (lang, word) column combination

Checks:
The following additional table check shall be created:

 TRANS: from_word <> to_word

Implicit, unenforced rules:
LANG: no id shall fall outside the range [1; N], where N is the number of rows.

Privileges:
The public group shall (optionally) be revoked of all rights to access the database, as
only the schema owner and the superuser need directly perform statements on tables
in the ITRW324_PROJECT4 schema.

 - 7 -

Section 4: System configuration

4.1. Installation:

The system has no automated installation. The steps to installing and running
Webtionary are roughly:

1. Set up servers (Section 2)
2. Extract Webtionary site from distribution files (see below)
3. Create database structure (Section 3 and sub-section 4.2)
4. Launch web server and DBMS (see Usage on next page)
5. Visit Webtionary site

Webtionary’s standard distribution files are located under the /data/share/bin
directory. Included in the directory are:

 Base site files;
 SQL dump(s) of the default database contents (also called boot files);
 Public, static data (FOSS wordlists);
 Anagram generator with wordlists; and
 System documentation

Extracting these archives to some directory under the web server tree, keeping the
archived directory structure intact, will complete the traditional installation of the
system – now, the database structure has to be created. Please refer to Section 3 and
sub-section 4.2 for more information on this procedure.

Webtionary uses a free server-side anagram generator. It has no separate installation
or configuration; it is fully functional after extraction.

4.2. Database structure:

The Webtionary structure can be created either manually or automatically. For manual
creation, please refer to Section 3.

Regarding the manual creation of the database structure; you may choose among one
or more of the following utilities to aid in its creation:

 pgAdmin;
 phpPgAdmin (web-based); and
 psql (command-line interface).

pgAdmin and phpPgAdmin are both intuitive; only resort to the command line
interface if the former are unavailable.

Alternatively, a SQL dump file exists that may be loaded into the DBMS to
automatically create the database structure. This file is distributed with Webtionary,
located at /data/boot/init/structure.sql. The file consists of various SQL data
definition statements that set up the database environment required by Webtionary.

 - 8 -

4.3. Initialization and recovery:

Webtionary contains a boot script which can be run at any time, in order to reset the
database to its original state. This can be used, for example, to initialize the system, or
to recover from a corrupted database.

The boot script is activated when either:

 Reset database is selected from Webtionary’s administration area; or
 init.php is executed from the cgi-bin directory.

The /data/boot/init/data.sql file contains the SQL statements that are executed during
initialization. This file is said to be the SQL dump of the database contents. This file
can be re-created by executing /cgi-bin/export.php in a shell or command line.

The database structure is not created or modified by this process – the database is
merely populated. Sub-section 4.2 describes the automatic structure creation process.

Note, however, that it may take a long time to reset the database, as all the current
data in the database is discarded, and the original data reloaded from the SQL dump.

4.4. Usage:

To activate Webtionary:

1. Start web server
2. Start PostgreSQL (possibly using restricted user account)
3. If the web server is running on the local machine, visit http://localhost and

navigate to the virtual path under the server tree where Webtionary was
installed

4. If the web server is not running on the local machine, visit the appropriate site
on the remote machine instead

4.5. Troubleshooting:

If you are unable to perform the steps in sub-section 4.4, then one or more of the
following may be the cause:

 Webtionary was not properly installed;
 Its database was not set up correctly; or
 There is a server configuration problem.

Study the server log files for more information, as they are the first sources that report
on errors.

